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Motivation

”Jazz musicians have always acknowledged the importance of
developing a unique stylistic voice as a way of transcending from
imitation and assimilation into innovation.”

(Berliner, 1994)
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Motivation

”Jazz musicians have always acknowledged the importance of
developing a unique stylistic voice as a way of transcending from
imitation and assimilation into innovation.”

(Berliner, 1994)

∙ What make jazz soloists recognizable by listeners?
∙ Syntactical features (pitch, interval, rhythm, harmonic / metrical
context)

∙ Non-syntactical / expressive features (micro-timing, dynamics,
intonation, pitch modulation, timbre / sound)
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Motivation

∙ Which factors affect the recognition?1

∙ Instrument sound of performer
∙ Expressive tone modifications

∙ Dynamics, articulations, pitch modulations, microtiming, ...

∙ Sound of accompanying instruments (rhythm section)
∙ Recording conditions

∙ Recording setup, microphone characteristics, recording year, ...

1Audio example
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Motivation

∙ Goals of this study
∙ Focus on instrument sound as complementary part to other expressive
features for jazz performance analysis

∙ Focus on trumpet (tp), alto saxophone (as), and tenor saxophone (ts)
∙ Evaluation scenarios: artist classification & similarity
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Motivation

∙ Application Scenarios
∙ Verification of known & discovery of unknown timbral similarities
between jazz soloists

∙ Automatic performer identification in jazz recordings
∙ Content-based metadata enrichment & cleanup for jazz archives

∙ Evolution of artist sound
∙ Imitation strategies among jazz soloists
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Related Work

∙ Timbre Research
∙ Timbre = Difference between sounds of the same pitch & loudness
∙ Among ”spectrographic attributes” [Benadon, 2003] with microtemporal
deviations (microtiming) & expressive nuances (vibrato & pitch
bending)

∙ Previous studies often use perceptual scaling to indentify underlying
acoustic dimensions
∙ Note envelope, temporal change in spectrum
∙ Rise time & quality of note attack
∙ Spectral centroid
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Related Work

∙ Jazz Performer Identification
∙ [Benadon, 2003]

∙ Music performance = Calligraphic (pitch, rhythm, contour) vs. spectrographic
(timbre, microtiming, pitch modulation) aspects

∙ Tenor saxophonist identification (John Coltrane, Dexter Gordon, Sonny Rollins,
Wayne Shorter)

∙ Listening tests (16 short 2-5 note sequences from post-bebop recordings)
∙ Results: 7 subjects show average recognition score of 11.9/16

∙ [Ramirez et al., 2010]
∙ Analysis of monophonic saxophone solo recordings (4 standards, 2 tempi, 3
performers)

∙ Spectral tone model, inter-note and intra-note features
∙ Deviation patterns from pitch, timing, amplitude, timbre
∙ Up to 98 % classification accuracy
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Related Work

∙ Jazz Performer Identification
∙ [Lazar and Lesk, 2016b]

∙ Comparison of 3 trumpet performances of St. Louis Blues by Louis Amstrong,
Harry James, and Wynton Marsalis)

∙ Spectrogram-based observation of characteristic timbre propoerties
∙ Note-level: sound fuzziness & sound clarity
∙ Segment-level: sound complexity & note envelopes (rising time)

∙ [Abeßer et al., 2015, Lazar and Lesk, 2016a]
∙ Importance on vibrato features for jazz performer classification

∙ Similar approaches for identification of singers, cellists, piano
players
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Proposed Method

∙ How to analyze the ”sound” of a jazz soloist?
∙ Data source: solos in commercial jazz recordings (multiinstrumental,
polyphonic)

∙ Use high-quality score information (Weimar Jazz Database) for “tone
localization”

∙ Isolate solo instrument from mixture signal (source separation)
∙ Tone-level spectrogram-based analysis
∙ Quantify different spectral & temporal properties of tones
(state-of-the-art timbre features)

∙ Use machine learning methods to learn artist-specific timbre patterns
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Proposed Method

∙ Processing Flowchart
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Proposed Method

∙ Pitch-informed solo & accompaniment separation
[Cano et al., 2014]
∙ Goal → isolate improvising solo instrument from accompaniment
instruments (rhythm section)

∙ Iterative spectral modeling of the solo instrument in the spectal
domain

∙ Includes musical instrument characteristics such as common
amplitude modulation, inharmonicity & magnitude and frequency
smoothness
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Proposed Method

∙ Feature Extraction
∙ One-Component Non-Negative Matrix Factorization NMF

∙ Represent tone spectrogram M as product of spectral envelope S and
temporal activation A
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Proposed Method

∙ Feature Extraction
∙ Spectral Features

∙ Representation: S
∙ → Statistics (centroid, spread, skewness, kurtosis)
∙ → Shape (decrease, slope, flatness, roll-off)
∙ Mel-Frequency Cepstral Coefficients (MFCC)
∙ Spectral Contrast (octave-based, shape-based)
∙ Inharmonicity
∙ Relative Harmonic Magnitudes
∙ Odd-to-even ratio
∙ Tristimulus 1-3
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Proposed Method

∙ Feature Extraction
∙ Temporal Features

∙ Representations: A, ∆A, 10-bin histogram over ∆A
∙ → Statistics (centroid, spread, skewness, kurtosis)
∙ → Shape (decrease, slope, flatness, roll-off)
∙ Relative attack part length
∙ Log attack / decay time
∙ Multi-resolution gamma filterbank (correlation with prototype envelopes)
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Experiments

∙ Dataset
∙ Solos (audio + manual solo transcriptions) taken from Weimar Jazz
Database2

∙ Performer selection → ≥ 4 solos / performer
∙ tp (7) → Chet Baker, Dizzy Gillespie, Freddie Hubbard, Kenny Dorham, Miles
Davis, Roy Eldridge

∙ ts (13) → Bob Berg, Coleman Hawkins, David Murray, Dexter Gordon, Don Byas,
John Coltrane, Joe Henderson, Joshua Redman, Lester Young, Michael Brecker,
Sonny Rollins, Stan Getz, Wayne Shorter

∙ as (8) → Art Pepper, Benny Carter, Cannonball Adderley, Charlie Parker, Lee
Konitz, Ornette Coleman, Paul Desmond, Steve Coleman

∙ Note selection → first 100 tones / solo with ≥ 100 ms duration

2http://jazzomat.hfm-weimar.de/dbformat/dboverview.html
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Artist classification

∙ Cross-validation strategy
∙ Leave-one-label-out cross-validation (LOLO-CV)

∙ Split of tones to training & test set strictly based on solo id
∙ Realistic assumption: some solos of artist are known

∙ Optional majority voting over all tones of a given solo
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Artist classification

Instrument tp as ts

Number of Performers 7 8 13
Random baseline 0.14 0.13 0.08

LOLO-CV 0.36 0.45 0.28
LOLO-CV (majority voting) 0.66 0.78 0.51
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Artist classification (as)

∙ Example: alto saxophone - tone-wise classification
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Artist classification (as)

∙ Example: alto saxophone - solo-wise classification (majority voting
over tones)
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Artist Sound Similarity

∙ Explore reduced version of timbre feature space
∙ Transform feature space (127 dim. → 2 dim.) using Linear
Discriminant Analysis (LDA) by
∙ maximizing the variances between performers
∙ minimizing the variances within performers
∙ (Feature dimensions are linear combinations of existing features)

∙ Interpretation
∙ Distance between class centroids → timbre similarity between
performers

∙ Clusters → Performers with similar sound
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Artist Sound Similarity (ts)
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Artist Sound Similarity (ts)

∙ Obervations
∙ Group 1: Coleman Hawkins, Lester Young, Don Byas

∙ Swing tenor sax players
∙ Cluster 2: John Coltrane, Bob Berg3, Dexter Gordon

∙ Dexter Gordon = early influence of John Coltrane4
∙ Bob Berg: “The example of John Coltrane was a major influence on his playing
[...].”5

3Audio example
4C. Woideck: John Coltrane: Development of a Tenor Saxophonist, 1950–1954, Jazz
Perspectives, Vol. 2, Issue 2, 2008
5http://www.jazzhouse.org/gone/lastpost2.php3?edit=1039185731
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Artist Sound Similarity (as)

27



Artist Sound Similarity (as)

∙ Obervations
∙ Cluster: Steve Coleman, Cannonball Adderley6

∙ Unique sound: Charlie Parker

6Audio example
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Artist Sound Similarity (tp)
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Artist Sound Similarity (tp)

∙ Observations
∙ Unique sound: Dizzy Gillespie & Roy Eldridge
∙ Cluster 1: Chet Baker, Miles Davis7

∙ “[..] his small tone and limited range will remind some listeners of Miles
Davis.”8

∙ Cluster 2: Kenny Dorham, Clifford Brown9

∙ Bebop trumpet players

7Audio example
8http://jazztimes.com/articles/20336-chet-baker-his-life-and-music-jeroen-de-valk
9Audio example
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Artist Sound Similarity

∙ Outlook: Influence of seperation method
∙ More “strict” separation can lead to losing valuable timbre information
(noise / transient properties)

∙ More “loose” separation → Classifier might learn sound of recording /
accompanying instruments

∙ Example: Separability of trumpet players
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Artist Sound Similarity (tp)

∙ Spectral Harmonic Filtering
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Artist Sound Similarity (tp)

∙ Source Separation
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Conclusion

∙ New approach for score-informed timbre analysis in jazz solos
∙ Weimar Jazz Database allows for “large-scale” evaluation
experiments

∙ Automatic soloist classification improved by
∙ Knowledge of solo instrument
∙ Majority voting over solos

∙ Timbre feature space confirms known / reveals unknown
similarities between jazz soloists
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Outlook

∙ Increase dataset size (artists, solos)
∙ Automatic Feature Learning (DNN)
∙ Quantify importance of different factors for artist recognition

∙ Harmonic components (fundamental frequency, partials)
∙ Noise components (attack transients, noise, subharmonic components)

∙ Combine timbre & style features (audio & symbolic) for artist &
style classification

∙ Listening test → human performance?
∙ Artist sound evolution → imitation strategies among soloist
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Thank you very much for your attention!
Questions?
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